skip to content

Sustainable Design

 
  • Bardhan R., Sunikka-Blank M., & Nasra-Haque A. (2019) Sentiment analysis as tool for gender mainstreaming in slum rehabilitation housing management in Mumbai, India. Habitat International,  https://doi.org/10.1016/j.habitatint.2019.102040 

  • Debnath, R., Bardhan, R., & Sunikka-Blank, M. (2019) How does slum rehabilitation influence appliance ownership? A structural model of non-income drivers, Energy Policy, 132, 418-428. https://doi.org/10.1016/j.enpol.2019.06.005 

  • Mehrotra, S., Bardhan, R., & Ramamritham, K. (2019). Urban form as policy variable for climate-sensitive area planning under heterogeneity: a geographically weighted regression approach. Area Development and Policy. https://doi.org/10.1080/23792949.2019.1609368

  • Sarkar, A., & Bardhan, R. (2019) Optimal interior design for naturally ventilated low-income housing: a design-route for environmental quality and cooling energy saving, Advances in Building Energy Research. https://doi.org/10.1080/17512549.2019.1626764

  • Debnath, R., Bardhan, R., & Sunikka-Blank, M. (2019) Discomfort and distress in slum rehabilitation housing- Investigating a rebound phenomenon using a backcasting approach, Habitat International. https://doi.org/10.1016/j.habitatint.2019.03.010 

  • Mehrotra, S., Bardhan, R., & Ramamritham, K. (2019). Outdoor thermal performance of heterogeneous urban environment: An indicator-based approach for climate-sensitive planning. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.03.152 

  • Sunikka-Blank M., Bardhan R., Nasra-Haque A. (2019) Gender, domestic energy and design of inclusive low-income habitats: A case of slum rehabilitation housing in Mumbai, India. Energy Research & Social Science, Volume 49, March 2019, Pages 53-67.https://doi.org/10.1016/j.erss.2018.10.020 

  • Mehrotra, S., Mammen, P. M., Ramamritham, K., & Bardhan R. (2019). Data Driven Monitoring of Thermal Profile : Towards Sustainable Urban Habitats. In ACM-ICTD’19 Proceedings of the Tenth International Conference on Information and Communication Technologies and Development (pp. 1–5). Ahmedabad, India: ACM. https://doi.org/10.1145/3287098.3287133

 

  • Sathyakumar V, RAAJ R & Bardhan R. (2018): Linking remotely sensed Urban Green Space (UGS) distribution patterns and Socio-Economic Status (SES) – A multi-scale probabilistic analysis based in Mumbai, India, GIScience & Remote Sensing, https://doi.org/10.1080/15481603.2018.1549819

  • Bardhan R., Debnath R., Malik J. & Sarkar A. (2018) Low-income housing layouts under socio-architectural complexities: A parametric study for sustainable slum rehabilitation; Sustainable Cities and Society, https://doi.org/10.1016/j.scs.2018.04.038

  • Debnath R., & Bardhan R. (2018) Resource Symbiosis Model through bricolage: A livelihood generation assessment of an Indian village; Journal of Rural Studies, 60 https://doi.org/10.1016/j.jrurstud.2018.03.010

  • Bardhan R., Debnath R., Jana A., & Norford, L. (2018) Investigating the association of healthcare-seeking behavior with the freshness of indoor spaces in low-income tenement housing in Mumbai; Habitat International, 71 (December), 156–168. https://doi.org/10.1016/j.habitatint.2017.12.007

  • Nutkiewicz A., Jain R., & Bardhan R. (2018) Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India. Applied Energy 231 (December), 433-445 https://doi.org/10.1016/j.apenergy.2018.09.002

  • Mehrotra, S., Bardhan R., & Ramamritham, K. (2018) Urban Informal Housing and Surface Urban Heat Island Intensity: Exploring Spatial Association in the City of Mumbai. Environment and Urbanization Asia, 1–20. https://doi.org/10.1177/0975425318783548

 

  • Basu R., Jana A., Bardhan R., & Bandyopadhyay S. (2017) Pinch Analysis as a Quantitative Decision Framework for Determining Gaps in Health Care Delivery Systems. Process Integration and Optimization for Sustainability  (3), 213-223.  https://doi.org/10.1007/s41660-017-0015-0

  • Chikaraishi M., Jana A., Bardhan R., Varghese V. & Fujiwara A. (2017) A framework to analyze capability and travel in formal and informal urban settings: A case from Mumbai. Journal of Transport Geography, 65 (September), 101–110. https://doi.org/10.1016/j.jtrangeo.2017.09.001 

  • Bardhan, R. (2017) Integrating rapid assessment of flood proneness into urban planning under data constraints: a fuzzy logic and bricolage approach, Area Development and Policy. https://doi.org/10.1080/23792949.2017.1338523

  • Debnath R., Bardhan R. & Banerjee R, (2017) Taming the killer in the kitchen : mitigating household air pollution from solid-fuel cooking through built-environment. Clean Technologies and Environment Policies. https://doi.org/10.1007/s10098-016-1251-7

  • Bardhan R., & Debnath R., (2016) Towards daylight inclusive bye-law: Daylight as an energy saving route for affordable housing in India, Energy for Sustainable Development. Vol-34, October.pp 1-9. https://doi.org/10.1016/j.egypro.2016.11.205

  • Debnath R., Bardhan R., & Banerjee R. (2016) Investigating the age of air in rural Indian kitchens for sustainable built environment design, Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2016.07.011

  • Debnath R., Bardhan R. & Jain R. K. (2016) A data driven-design framework for urban slum housing: Case of Mumbai, BuildSys ’16, November 16-17, 2016, Palo Alto, CA, USA ACM. http://dx.doi.org/10.1145/2993422.2996406

  • Basu, R., Jana, A., & Bardhan R. (2016) A Health Care Facility Allocation Model for Expanding Cities in Developing Nations: Strategizing Urban Health Policy Implementation. Appl. Spatial Analysis. https://doi.org/10.1007/s12061-016-9208-0 

  • Jana, A., Bardhan, R., Sarkar, S., & Kumar V (2016) Framework to assess and locate affordable and accessible housing for developing nations: empirical evidences from Mumbai; Habitat International. https://doi.org/10.1016/j.habitatint.2016.07.005

  • Bardhan, R., Kurisu, K., & Hanaki, K. (2015). Does compact urban forms relate to good quality of life in high density cities of India? Case of Kolkata. Cities, 48, 55–65. https://doi.org/10.1016/j.cities.2015.06.005